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Chaotic spatially subharmonic oscillations
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The interplay between two instabilities respectively breaking space and time symmetries can give rise to
spatially subharmonic oscillations generated by a self-induced parametric instability. In one-dimensional sys-
tems, the resulting dynamics consists in a pattern with two wave numbers oscillating with one frequency.
Conditions are given for which this solution becomes phase unstable giving rise to spatiotemporal chaos.

PACS number(s): 05.45.+b, 47.20.Ky

A rich variety of complex spatiotemporal behaviors may
occur in the vicinity of multiple bifurcation points [1]. In
particular, the interaction between a steady instability that
breaks spatial symmetry and a bifurcation breaking time
translation symmetry has been the subject of numerous stud-
ies [2—7]. As an example, we have reported previously that
the interplay between the Turing and Hopf instabilities can
give rise to localized structures in the form of asynchronous
wave sources with structured cores [8] or to a chaotic
Turing-Hopf mixed mode [9]. Such dynamical behaviors
have now been observed experimentally in a chemical sys-
tem [8,10]. In this Rapid Communication, we show that self-
induced subharmonic bifurcations can also be generated by
resonances near such degenerate instability points. In some
cases, the resulting subharmonic dynamics can become spa-
tiotemporally chaotic.

We suppose that the reference homogeneous steady state
(HSS) of a one-dimensional (1D) physicochemical system
can undergo both a pattern-forming instability giving rise to
a periodic structure with a wavelength \.=2m/q, and a
Hopf bifurcation. The distance between the two thresholds of
instability, the unfolding parameter, is denoted as &§. For ex-
ample, in the case of chemical reactions taking place in a gel,
the concentration of the color indicator immobilized in the
matrix allows one to control the distance between the Turing
and Hopf bifurcation points [8,10]. If & is sufficiently small,
the eigenvalue of the 1/2 subharmonic of the steady critical
mode can become complex and near the critical point the
corresponding real part is small. The resonant interaction be-
tween the corresponding pair of Hopf modes with wave
number q. /2 and the steady state with wave number g, must
then be taken into account [11]. In the vicinity of such a
critical situation, the field variable of the problem C(x,f)
may be expressed in terms of the steady mode with ampli-
tude T and two traveling waves with amplitudes A, and
Ap:

g(x,t) :go + Teiqcng+ALei[“’(qc /2)t+qcx/2]£L
+ARei[w(qc/2)17 qcx/z]gR +c.c. (l)

where C is the reference HSS, ey, e;, and eg the critical
eigenvectors of the linearized matrix corresponding to the
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steady state and the Hopf modes while w(q./2) is the critical
frequency of the Hopf mode with wave number ¢, /2. The
competition between these modes is then described by am-
plitude equations that are derived by the use of standard
techniques [12,13]. If 7 and x are the slow time and space
scales then

oT 2 2 2 * 62T
E;Z,U«TT_glﬂ T—X\(JAg|*+ A, )T+UARAL+D(?—X2a
2
aAR ! 14 ’ ’
—, =M AR g |ArPAR—h'|ALPAR—N'|T|?Ag
.- AR Ag
+v'T AL-CW+D sl (3)

aAL ! ’ ! ! ’
= = AL |ALPAL —h|ARPAL = N'|T|?A +v ' TAR
A, I*A;
+C(9—X- D' 0)(2 . (4)

The coupling constants appearing in these equations can be
related to the parameters of the system. The primed coeffi-
cients are complex (a’=a, +ia;) while u, = ur+ & where
mr measures the distance from the steady bifurcation thresh-
old and c is related to the group velocity of the waves. The
most important feature of the above equations is the presence
of a resonant interaction proportional to v and v’ induced by
the coupling between the steady mode and the waves. This
term introduces a phase dependence into the dynamics. The
simplest nontrivial solution of these equations is a pure
steady state:

T?’="—", Agr=A,=0. (5)

It is the first to appear supercritically when 6<0 and g>0.
As the bifurcation parameter wy is increased above zero, this
periodic structure undergoes an instability for wr= u; where
p is determined from
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FIG. 1. Space-time density plot of C(x,t) showing the stable
subharmonic mixed mode. The amplitudes 7, A, and A; have
been obtained by integrating the system (2)—(4) without diffusion
and group velocity using an explicit Euler scheme. The parameters
are ur=0.7, g=2, A\=4, v=1, §=—0.05, g'=3+i, h' =6+,
N =2+1i,v'=0.240.5i. The field variable is then reconstructed as
C(x,8)=Te 0%+ A, ! O1F02) 4 g (01029 ¢ ¢ The minima
(maxima) of C(x,t) are in white (black). Time is running down-
wards.

prt 6=\ (py/g)+v Np/g=0 (6)

obtained through a linear stability analysis. When the follow-
ing condition is satisfied:

2(g +h)) pu—[v,— 2NV /gllv, — 2N wz/g]>0,( :
7

the solution that bifurcates from the pure steady state mode
at up= u; corresponds to a mixed mode for which
T=Ty,

AR:RMei[QMt+¢R]’ AL:RMei[QMt+¢L].

(8

By an appropriate choice of the origin of coordinates, we can
consider Ty, as real. When v,/>0, the phase dynamics im-
plies that

Pr=br . 9

Substituting into Egs. (2)—(4), and equating real and imagi-
nary parts, we get

Qu=u!—Rylg/ +h{1-NTy+v{Ty,  (10)
w =N T3 +v!T
R}y= Mo (1)
g, +h,]
0=[pr—2\R3 1Ty +vRs,— 8T, . (12)

The spatiotemporal dynamics corresponding to this mixed
mode solution is thus the combination of a steady structure
with wavelength g, and a standing wave formed by the su-
perposition of the left- and right-going waves (Ar=A) with
wave number ¢, /2 and frequency w(q. /2). The correspond-
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FIG. 2. Space-time density plots of the spatiotemporal chaos
obtained when the subharmonic mixed mode is phase unstable. In-
tegration of the amplitude equations (2)—(4) is performed with dif-
fusion and group velocity on a system of length 64 during 120 units
of time using periodic boundary conditions. The spatial differentia-
tion has been made using finite differences. All conditions are the
same as in Fig. 1 except g'=3.0+0.2i, N'=2+5i, D=0,
D’ =0.5+5i while c=0.01. (a) and (b) amplitude and phase of the
right-going wave shown on scales 7 and x; (c) field variable
C(x,t)=Te ¥+ A 01+ 1) 4 4 o/ (OU=159) 4 ¢ ¢ reconstructed
on scales ¢ and x.

ing space-time plot for the reconstructed field C(x,#)[Eq.
(1)] is displayed in Fig. 1. The characteristic polygonal
space-time structure of a mixed mode is obtained. At each
location, the system is oscillating with one frequency but,
because of the presence of two wave numbers, we see that
the minima of the structure are shifted one wavelength every
half period of oscillation. This dynamical behavior presents
strong analogies with the spatially subharmonic oscillations
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that have been observed on the 1D front in the flow of a fluid
inside a partially filled rotating horizontal cylinder [14].
Similar oscillating patterns have also been obtained in nu-
merical integration of a reaction-diffusion model in the vi-
cinity of the codimension-two Turing-Hopf point [15]. These
mixed modes are of a different origin than those introduced
in [4]. It is worthwhile to point out that for the values of the
parameters used in Fig. 1, the standing wave of the system
[(3) and (4)] with T=0 are unstable versus traveling waves
(h;>g;). It is known that such a standing wave can be
stabilized if an external time modulation with a frequency
twice the frequency of the traveling waves is applied to the
system [16,17]. Here we show that the stabilization of the
standing waves can also be self-induced by an intrinsic cou-
pling with the steady mode which plays the role of an exter-
nal forcing by restoring the left-right symmetry.

The mixed mode [Eq. (8)] is stable versus spatially uni-
form amplitude perturbations as long as the following in-
equalities are satisfied:

A=[g,+h,]

UvR?
28T+ M}

Ty
2 > vRi,
Tr=-— 2(g,’+h;)RM+2gTM+T— <0. (14)
M

However, in the experiments on 1D fronts [14], when the
bifurcation parameter is increased beyond u;, spatial modu-
lations appear spontaneously which disturb the regularity of
this oscillating subharmonic pattern. It is thus necessary to
study also the stability of the mixed mode with respect to
inhomogeneous perturbations. The mixed mode solution [Eq.
(8)] is invariant under the transformation

(//(T7 AL= AR):(T’eil/’AL >eiwAR) (15)

which corresponds to a shift in time ¢'—¢— /. This
property generates a whole family of solutions and induces a
zero eigenvalue in the homogeneous linearized matrix. In the
presence of slow spatial modulations that preserve the con-
dition (9) on the large scales, (x,t) depends on space and
time and obeys a phase diffusion equation of the form [12]

oy Iy op\?

— =00 =+ —] .

ot~ ox? K( ox (16)
A phase instability occurs when 7= 0. After a little alge-

bra, it is easy to show that this long wavelength instability

takes place when

!

D;
=D+ 118 +h]

vR?
2gT§,,+ T,:}

—[v,-'—Z)\i'TM][v—Z)\TM]}<O, 17)
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This condition is the analog for the subharmonic mixed
mode of the Benjamin-Feir stability criterion for the travel-
ing waves [12]. We have numerically integrated the ampli-
tude equations (2)—(4) for values of parameters that satisfy
the condition (17). In the case presented here, the resulting
phase instability spontaneously generates numerous phase
defects [18] and large fluctuations of the three amplitudes
thus mediating spatiotemporal chaos as shown in Fig. 2.
When the amplitude of the waves locally reaches zero [white
regions in Fig. 2(a)], the phase of the waves exhibits space-
time dislocations [Fig. 2(b)], a behavior reminiscent of the
so-called “amplitude chaos” [18,19]. The space-time plot of
the reconstructed field variable C(x,t) confirms that the sys-
tem does not oscillate at the locations where the amplitude of
the waves is minimum thus expressing the steady state solu-
tion. On the contrary, when the amplitude of the waves is
maximum, the amplitude of the steady state is minimum and
the system is locally in an oscillating mode.

As long as the phase difference is locked on the large
scale, i.e., condition (9) is fulfilled, the resonant interaction
plays a crucial role in the localization of the defects [17].
However, when the group velocity is sufficiently large, the
state with ® = ¢p— ¢, =0 is destabilized. The phase vari-
able @ then obeys a sine-Gordon equation of diffusion type
that is known to admit stable propagating solitons as solu-
tions [20,21]. Such solitary waves have also been observed
in the film draining experiment [22].

In this Rapid Communication, we have shown that the
coupling between a pattern-forming instability and a Hopf
instability can induce a bifurcation from a steady pattern to-
wards a subharmonic structure characterized by two wave
numbers and one frequency. We have next given the condi-
tions under which this subharmonic pattern can become
phase unstable giving rise to a spatiotemporally chaotic dy-
namics. This scenario explains the sequence of bifurcations
recently observed experimentally in a hydrodynamical sys-
tem [14]. Such a scenario should also exist in chemical sys-
tems where the degeneracy between the Turing and Hopf
instabilities can be achieved experimentally. The subhar-
monic pattern has indeed been observed in the numerical
integration of the reaction-diffusion Brusselator model near
the codimension-two Turing-Hopf point [15]. Let us further-
more note that subharmonic patterns have also been obtained
in a study of two different immiscible liquids lying in layers
between horizontal walls and heated from below [23]. Fi-
nally, a parametric instability of a homogeneous limit cycle
towards a subharmonic mixed mode with two wave numbers
and two frequencies followed by a transition to spatiotempo-
ral chaos has also been documented recently in the Brussela-
tor model [15] and in the Gray-Scott model [24]. In the latter
case, the stabilization of the spatiotemporal chaos has al-
lowed one to track an unstable Turing pattern. These results
emphasize the need to understand in detail the mechanisms
of appearance of spatiotemporal chaos near degenerate bifur-
cation points.
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FIG. 1. Space-time density plot of C(x,r) showing the stable
subharmonic mixed mode. The amplitudes T, Ay, and A; have
been obtained by integrating the system (2)—(4) without diffusion
and group velocity using an explicit Euler scheme. The parameters
are ur=07, g=2, A=4, v=1, §=-0.05, g’'=3+i, h' =6+,
N =2+i,v"'=0.2+0.5i. The field variable is then reconstructed as
C(I,I)=TE"(]'M+A!_(’i((]'“1”'ln+AR("(”‘“7“'1”+C.C. The minima
(maxima) of C(x,r) are in white (black). Time is running down-
wards.



FIG. 2. Space-time density plots of the spatiotemporal chaos
obtained when the subharmonic mixed mode is phase unstable. In-
tegration of the amplitude equations (2)—(4) is performed with dif-
fusion and group velocity on a system of length 64 during 120 units
of time using periodic boundary conditions. The spatial differentia-
tion has been made using finite differences. All conditions are the
same as in Fig. 1 except g'=3.0+0.2i, \'=2+5i, D=0,
D’'=0.5+5i while ¢=0.01. (a) and (b) amplitude and phase of the
right-going wave shown on scales 7 and y; (c) field variable
C(x,0)=Te 0¥ +A /Ol 4 g olON-15) 4 ¢ o reconstructed
on scales ¢ and x.



